AU6958891A

AU6958891A – Vandal-resistant seat
– Google Patents

AU6958891A – Vandal-resistant seat
– Google Patents
Vandal-resistant seat

Info

Publication number
AU6958891A

AU6958891A
AU69588/91A
AU6958891A
AU6958891A
AU 6958891 A
AU6958891 A
AU 6958891A
AU 69588/91 A
AU69588/91 A
AU 69588/91A
AU 6958891 A
AU6958891 A
AU 6958891A
AU 6958891 A
AU6958891 A
AU 6958891A
Authority
AU
Australia
Prior art keywords
mould
flexible
volume
plastics material
foamable
Prior art date
1989-12-11
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)

Granted

Application number
AU69588/91A
Other versions

AU639972B2
(en

Inventor
John Arthur Clements
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)

Plaskona Industries Pty Ltd

Original Assignee
Plaskona Ind Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
1989-12-11
Filing date
1990-12-10
Publication date
1991-07-18

1990-12-10
Application filed by Plaskona Ind Pty Ltd
filed
Critical
Plaskona Ind Pty Ltd

1991-07-18
Publication of AU6958891A
publication
Critical
patent/AU6958891A/en

1993-08-12
Application granted
granted
Critical

1993-08-12
Publication of AU639972B2
publication
Critical
patent/AU639972B2/en

1999-06-10
Assigned to Plaskona Industries Pty Ltd
reassignment
Plaskona Industries Pty Ltd
Alteration of Name(s) in Register under S187
Assignors: HENDERSON’S INDUSTRIES PTY LTD

2010-12-10
Anticipated expiration
legal-status
Critical

Status
Ceased
legal-status
Critical
Current

Links

Espacenet

Global Dossier

Discuss

Classifications

B—PERFORMING OPERATIONS; TRANSPORTING

B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL

B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING

B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor

B29C39/02—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles

B29C39/10—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles

B—PERFORMING OPERATIONS; TRANSPORTING

B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL

B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING

B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles

B29C44/34—Auxiliary operations

B29C44/58—Moulds

B29C44/588—Moulds with means for venting, e.g. releasing foaming gas

B—PERFORMING OPERATIONS; TRANSPORTING

B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL

B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING

B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles

B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles

B29C44/12—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements

B29C44/14—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining

B29C44/145—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining the lining being a laminate

B—PERFORMING OPERATIONS; TRANSPORTING

B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL

B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING

B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles

B29C44/34—Auxiliary operations

B29C44/60—Measuring, controlling or regulating

B—PERFORMING OPERATIONS; TRANSPORTING

B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL

B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS

B29K2101/00—Use of unspecified macromolecular compounds as moulding material

B29K2101/10—Thermosetting resins

B—PERFORMING OPERATIONS; TRANSPORTING

B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL

B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS

B29K2105/00—Condition, form or state of moulded material or of the material to be shaped

B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts

Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS

Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC

Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS

Y10S425/00—Plastic article or earthenware shaping or treating: apparatus

Y10S425/812—Venting

Abstract

PCT No. PCT/AU90/00585 Sec. 371 Date Jun. 11, 1992 Sec. 102(e) Date Jun. 11, 1992 PCT Filed Dec. 10, 1990 PCT Pub. No. WO91/08886 PCT Pub. Date Jun. 27, 1991.A method of manufacturing an article is disclosed which includes an outer fabric material and an inner micro-cellular thermosetting foam plastics material. The method includes facing the outer fabric material, which has been treated on its inner side with a flexible thermosetting plastics material composition, in a mould, closing the mould to define a mould cavity and to deform the fabric material to a predetermined configuration, injecting a foamable flexible thermosetting plastics material composition into the mould, allowing the foamable flexible plastics material to react and completely fill the mould, the pressure of the reaction in the closed spaced of the mould causing the flexible plastics material to bond to the fabric material, allowing the resultant fabric covered micro-cellular foam plastics material to cure, and opening the mould and removing the article.

Description

VANDAL-RESISTANT SEAT
The present invention relates to methods of manufacturing laminated articles, in particular to laminated articles that are used as a seat cushion or a seat back support, and more particularly to vandal or damage resistant seats for use on public transport.
A number of vandal resistant seats offered for use in public transport in recent years have been criticised because they are too hard and lack comfort, for example the seat described in Australian Patent Application No. 52495/86 uses a polyurethane (V8080) and Moca. Supplied by Uniroyal Aust. Pty. Ltd. this provides a high tensile elastomer with a shore «A» hardness of about 75-85 which is used in conjunction with a wire mesh with a wire diameter .75mm. The wire in this construction presents a reasonably stiff -. form without the elastomer. The addition of the elastomer makes a very stiff and board like seat. The elastomer is hard when moulded into a seat without the wire reinforcement. While mesh of a chain-mail type is mention it would do little to improve the flexibility in this case unless a softer more flexible elastomer were’ to be used. Moreover, this process uses a material that needs to be kept at elevated temperatures, i.e. in excess of 100°C and requires a long curing period, for example 2 hours plus post curing for a further 8 hours. Vickerε Xatal AU-B-12028/88 describes a solid form seat pan covered by a flat sheet which illustrates the difficulty experienced by others attempting to mould vandal resistant materials into seat shapes and retain the flexibility necessary for some degree of comfort. The method of moulding seat shapes appears to have been abandoned in favour of a solid seat pan.
U.K. Patent G.B. 204,107,420 to J. L. Danton and M. Duret, also teaches a wire reinforced construction, while this produces a softer and more flexible seat it has other manufacturing limitations in that only flat sheets appear to be produced by this method. J.L. Danton and M. Duret in European Patent No. 0,201,419 FIGS. 1-8 describe a method by which a three dimensional seat shape as opposed to a flat

sheet may be made. This is done by fixing or moulding the previously manufactured sheet into a rigid plastic or metal frame. Unfortunately a flat sheet fixed in this manner tends to become stiffer unless it can elongate and flex which of course this material cannot. A somewhat hard and uncomfortable seat material results.
Other methods published on the manufacture of vandal or damage resistant seats e.g. U.S. Patent No. 3,647,608, D. S. Enlow describes a method for producing a softer seat. However it has been found that seats manufactured by this method provide little resistance to damage by puncturing, and are not difficult to slash because the article is made of a foam in the density range that would normally be used for seating i.e. 35-60Kg. per cubic meter, and reinforced by unconnected randomly oriented wires or metal fibres. Foams of this type have relatively low tensile strength and when used in combination with unconnected wires are not difficult to hack and pull apart, therefore seats manufactured by this method present only limited resistance to attack by vandals. D. S. Enlow in this invention did not consider damage that may be caused by fire from either large or small ignition sources. The overall resistance of articles made by this method are therefore limited.
The current favoured method of manufacturing a vandal resistant seat involves producing a wire reinforced microcellular urethane elastomer seat form, mounted on a board and supported on a fire retardant foam. The seat form then has to be covered by a woollen fabric which is attached to the seat form in a manner that makes the fabric as difficult as possible to remove or damage. The fabric is treated with at least three heavy coats of adhesive. The seat form is also treated with adhesive, and the adhesive is allowed to dry. The seat form and the adhesive coated woollen fabric are then placed in an infra-red oven and heated until tacky to reactivate the adhesive. The woollen fabric is then placed onto the seat form taking care to align the pattern and remove creases. The form is trimmed

by pulling the woollen fabric around the corners and sides of the seat form and stapling onto the board. The operation of placing the treated woolen fabric on the seat form and trimming the part is very time consuming and requires a high degree of skill. As will be appreciated, mistakes made during this operation result in very expensive scrap.
The prior art methods that are specific to the manufacture of vandal-resistant seats therefore have a number of limitations.
It is an object of the present invention to alleviate at least some of the aforementioned disadvantages.
In accordance with the foregoing and in one aspect of the present invention there is provided a method of manufacturing a formed (vandal resistant) article including an outer fabric material and an inner micro-cellular thermosetting foam plastics material, comprising : placing the outer fabric material, which has been treated on its inner side with a flexible thermosetting plastics material composition, in a mould; closing the mould to define a mould cavity and to deform the fabric material to a predetermined configuration; injecting a foamable flexible thermosetting plastics material composition into said mould; allowing the foamable flexible plastics material to react and completely fill said mould, the pressure of the reaction in the closed space of the mould causing the flexible plastics material to bond to the fabric material; allowing the resultant fabric covered micro-cellular foam plastics material to cure; opening the mould and removing the article.
The formed article may in a preferre aspect include a wire mesh reinforcing and thus in a second aspect the invention provides a method of manufacturing a formed wire mesh reinforced article including an outer fabric material and an inner micro-cellular foam thermosetting comprising plastics material reinforced by a metal wire mesh embedded therein comprising placing the outer fabric material, treated on its inner side with a flexible thermosetting plastics material composition in a mould;

closing the mould to deform the fabric material to a predetermined configuration; opening the mould and inserting the wire mesh on the inner side of the fabric; closing the mould and injecting a foamable flexible thermosetting plastics material composition; allowing the foamable flexible plastics material to react and completely fill the mould, the pressure of the reaction in the closed space of the mould causing the flexible plastics material to surround the wire mesh and to bond to the fabric material; allowing the resultant fabric covered reinforced micro-cellular foam plastics material to cure; opening the mould and removing the article.
The invention may also provide in a further aspect a method of manufacturing a formed article comprising : placing a preform having an outer fabric material, treated on its inner side with a flexible thermosetting plastics material composition, in a mould; injecting a foamable flexible thermosetting plastics material composition into said mould; allowing the foamable flexible plastics material to react and completely fill said mould, the process of the reaction in the closed space of the mould causing the flexible plastics material to bond to the fabric material; allowing the resultant fabric covered micro-cellular foam plastics material to cure; opening the mould and removing the article.
The fabric material of the preform may also include on its inner side a wire mesh reinforcing.
The invention also relates to articles manufactured in accordance with the method of manufacture.
The flexible thermosetting plastics material is selected for compatibility with the foamable plastics material so that maximum bond strength between the outer fabric material and the inner, preferably wire reinforced foamable plastics material is achieved.

In one preferred aspect the fabric material and wire mesh are placed in the mould with the mould in a horizontal plane. When closed, the mould is tilted to a vertical plane, and the foamable plastics material is injected into the top of the mould and flows down through the mould under the influence of gravity.
The mould is so constructed as to allow the injected foamable plastics material to push the air in the mould down through the mould and vent out of the bottom of 0 the mould. The gel or setting time of the foamable plastics material is timed to gel or set as it enters the vents at the bottom of the mould. Filling of the mould continues until the foamable plastics material overflows via a vent into channels provided for this purpose. Filling continues 5 until all settling in the channel stops.
The product is allowed to cure then removed from the mould.
In an alternative process which produces a more resilient and «softer feel» product the amount of foamable n flexible plastics material injected into the mould is preferably from 50% to 100% by volume of the unexpanded or unfoamed flexible plastics material as compared to the total volume of the mould with from 60% to 99% v/v being preferred and from 75% to 95% v.v. being particularly preferred. The C. reaction of the foamable flexible plastics material, in the confined space (of up to 50% of the volume of the foamable flexible plastics material volume if it were permitted to foam and expand unfettered) produces the micro-cellular foam plastics material integrally bonded to the outer fabric. 0 By moulding the foamable plastics material which is preferably wire reinforced directly onto the woollen fabric, thereby forming the fabric material to a predetermined shape, the need for skill is greatly reduced, and the time required to produce a seat cushion or seat back is reduced 5 by approximately 15 to 20 minutes per part. Thus, the method of the invention provides improved production methods and a reduction in the time taken to produce an article.

One feature of the invention is the high bond strength of the (preferably woollen) fabric material to the foamable plastics material. This is achieved by the application of a urethane adhesive to the fabric. An example of a suitable adhesive is No. 2518 plus isocyanate No. 2518/7. Available from Beta Chemicals Melbourne Victoria, or Daltobond VF/AR available from I.C.I. Adhesives. High bond strengths are achieved by the application of heavy coats of adhesive by spraying. Three heavy coats are generally required. The adhesive is applied so as to penetrate to about 50% and not less than 30% of the depth of the fabrics fibres so as to bond the fabric material into one continuous sheet. In this manner maximum mechanical bonding is obtained. The isocyanate will also react with moisture present in the fabrics fibres thereby improving the bond. Fabrics back coated in this manner show a marked improvement in resistance to wear by abrasion. The preferred fabrics of the present invention, predominantly selected for aesthetic reasons, are moquette type fabrics and denser woven woollen fabrics.
In an alternate embodiment, the preformed fabric is transferred to a second mould where wire is inserted (on the inner side of the fabric). The mould is closed and a foamable plastics material composition is injected to completely fill the mould.
By allowing the foamable plastics material to react, the pressure of the reaction in the closed space of the mould causes the flexible plastics material to surround the wire mesh and to bond to the fabric material.
The resultant fabric covered reinforced microcellular foam plastics material is allowed to cure in the normal manner. •
The wire mesh may be an ordinary fly-wire type mesh or a «cyclone fence» type mesh, which is favoured as it provides better flexibility in the finished article.
The foamable plastics material is preferably a polyurethane foam or a silicon(e) foam. The polyurethane foam is preferably a fire retardant polyurethane foam as will be described in greater detail hereinafter.

– 1. – A further aspect contemplated by the present invention is to ensure the maximum level of fire performance possible, i.e. no spread of flame, the ability to withstand attack from large ignition sources to produce low levels of, smoke and toxic gases during combustion, and to provide the maximum time from onset of ignition to the development of smoke in order to allow people to either escape the area of the fire or put out the fire.
The invention refers to polyurethane materials that can be used at room temperatures i.e. preferably in the range 25-50°C. The preferred polyurethane materials of the invention require only short mould resident times i.e. 3-6 minutes from pour to demould. The preferred material should require no post curing. The invention refers to a fabric covered preferably wire reinforced microcellular polyurethane seat cover. The seat cover is moulded in- one shot i.e. the fabric covering material, wire reinforcement if required, and elastomer are moulded and bonded together in the mould.
As mentioned before, the preferred materials should be highly fire retardant or capable of being made so. The. fire retardant properties should include low smoke low toxic products of combustion.
Such a material is preferably a polyether based polyurethane derived from a Diol- or a Triol-based polyol where at least 50% of the hydroxyl end groups are primary end groups and an isocyanate. Preferably a polyurethane foam including a fire retardant system of a chlorinated paraffin, sodium tetra-borate, antimony trioxide, and alumina trihydrate. Polyols used in making the present invention are preferably diols or triols, having a molecular weight of about 2500-7500, and at least 50% of the hydroxyl end groups being primary hydroxyl end groups. Examples of diols or triols well suited to the present invention are linear and branched polyoxypropylene polyols block copolymers of ethylene oxide and propylene oxide, and polyol grafts of ethylenically unsaturated monomers such as in particular styrene and acrylonitrile on the aforementioned

polyols. These polyols will be substantially free from functional groups other than hydroxyl groups and as mentioned above, will be- in the main tipped with primary hydroxyl groups. Most preferred at least about 78% of the hydroxyl groups are primary hydroxyl end groups. Examples of suitable polyols available commercially are CP4701. (Dow Chemicals), Niax 11-34 (Union Carbide), Desmophen 3900 (Bayer), propylan M12 (Lankro Chemicals), and Daltocell T 32-75 (I.C.I. ). Examples of suitable grafted polyols or polymer polyols or PHD. polyols (i.e. dispersions of polyvinyl or polyurea compounds in diol or triol polyols) commercially available are Niax 34-28 (Union Carbide), Pluracol 518 (BASF-Wyandotte) and PU 3119 (Bayer). E609 (Union Carbide) .
Water is usually added to the blend as a blowing agent in order to create a foam plastics material as it reacts with- excess isocyanate to liberate carbon dioxide gas. Most commercial polyols have between 0.05-0.1% water in them and usually about 0.08% the water normally present in the polyol is all that is required for minimum blowing.
If a totally non foaming elastomer is required it would be necessary to place the polymer in a vacuum oven and heat to about 80-90°C for 4-8 hours to remove all air and moisture. As the polymer is confined within the mould and the mould is filled, the pressure of the reaction in the closed space of the mould allows very little foaming to take place. The microcellular elastomers made according to the invention have performed as described later. A non cellular elastomer is not considered to offer any advantage.
The preferred isocyanates are toluene di-isocyanate (TDI) polymethylene polyphenyl iso-cyanate and diphenylmethanc di-isocyanate, both of which are known as MDI, and mixtures of these two isocyanates. The invention does not preclude the use however of other aromatic and aliphatic isocyanates known in the art. The amount of isocyanate required is regulated by the stoichiometry of the reaction, an index of 100-120 giving microcellular elastomers with optimum physical properties.

The foamable plastics material is preferably a polyurethane foam. The polyurethane is preferably a fire retardant polyurethane foam, including a borax and/or hydrated alumina and antimony trioxide and a chlorinated paraffin. The flame retardant system of the present invention includes about 5-25 parts by weight of antimony trioxide, about 10-60 parts by weight alumina trihydrate, about 10-80 parts by weight of sodium tetraborate, and about 20-80 parts by weight of a chlorinated paraffin, based on 100 parts by weight of the polyol. The antimony trioxide will generally be present in the formulation in an amount ranging from 5-20 parts by weight, preferably from about 7-15 and most preferably about 12 parts. The chlorinated paraffin will usually be present in an amount ranging from 25-65 parts by weight, preferably from about 40-60 parts, and most preferably 40-50 parts. Alternatively the paraffin can be expressed in terms of the chlorine content and generally there is present about 20-40 parts, preferably about 25-35 parts by weight of chlorine. The term «chlorinated paraffin» includes a single chlorinated paraffin or mixtures thereof.
Chlorinated paraffins have a chlorine content ranging from 30%-70%. A chlorinated paraffin with a chlorine content of about 60% is preferred. The chlorinated paraffins may be either liquid or solid for example CERERCLOR 70 or 70L. (CERECLOR is a Registered Trade Mark of I.C.I.) the liquid chlorinated paraffin is preferred.
Catalysts, promotors and amines known in the art are used in the formulation of foam polyurethane compositions described above.
Other elastomers and foams which may be used in place of polyurethane elastomers and polyurethane foam materials are silicone elastomers such as RTU.627 and silicone foams RTF.762 and RTF.8510 produced by General Electric, Silicone Products Division, Waterford, New York 12188. These silicone elastomers and foams have excellent fire retardant properties. The silicone elastomer/foam products are made in similar manner to the polyurethane elastomer/foam products described earlier.

In one particularly preferred form of the invention, the fabric covered steel mesh reinforced micro-cellular foam when moulded forms a hollow case, the lower 10mm. of the outer circumference of which is not covered by the fabric material. The hollow case is then mounted on a 10mm. plywood board by stapling through the lower 10mm. of the hollow case provided for this purpose and into the edge of the plywood board. The plywood board may be made fire retardant by treatment with known fire
10 retardant. chemicals for timber. The fabric cover which extends about 100mm. past the lower edge of the fabric covered wire reinforced hollow case is then pulled over the lower edge of the hollow case and stapled to the underside of the plyboard by two continuous rows of staples. The ic woollen cover stapled in this manner extends about 25-30mm onto the blyboard base. The excess woolen fabric is then trimmed off. The staples pass through and aroϋnd the wire reinforcement to attach the seat form firmly- to. the. plywood board.
20 By way of example only two foamable plastics material (elastomer) formulations were chosen. The elastomers were chosen so that the tensile strength of the elastomer referred to as No. 1 is a little higher than the tensile strength of the woollen fabric material and the
25 elastomer referred to as No. 2 is a little below the tensile strength of the woollen fabric material.
Elastomer No. 1 SHORE «A» hardness 45-50.
Elastomer No. 2 SHORE «A» hardness 335-40.
In order to maintain flexibility, a flexible wire
30 mesh supplied by Hunter Wire Products was selected with – pitch as described in Australian Patent No. 41933. This allowed for an optimum elastomer thickness of 5-6mm, the intention being to reduce the hardness and increase the flexibility. A further feature of the invention is to ge choose materials so as to achieve maximum bond strength between the elastomer and the woollen fabric.
Test samples were produced to evaluabe the peel strength of the elastomers. Test samples 5mm*60mm*240mm,

reinforced with wire supplied by Hunters Wire Products and covered with a pure wool fabric. The samples were subjected to a standard «T» peel test as outlined in attached sheet Q.P.5.
Test samples referred to as elastomer No. 1 SHORE «A» 45-50 had peel strengths in the range 120-150 Newtonε.
Test samples referred to as Elastomer No. 2 SHORE «A» 35-40 had peel strengths in the range 65-90 Newtons.
A number of the tests on test samples of elastomer No. 1 ended prematurely due to the wool fibres pulling apart. This mode of failure is ideal where the wool pulls apart rather than peels away, the elastomer and the bond being stronger than the tensile strength of the fabric.
For the elastomer referred to as No. 2, the samples peeled uniformly behind the joint line, in this case the fabric to elastomer joint line being stronger than the tensile strength of the elastomer.
While it would appear that the harder material sample No. 1 would be most preferable from the vandal resistant point of view, trials conducted so far have indicated that both elastomers have performed equally in test situations, the No. 2 elastomer being preferred for its extra flexibility and softer peel. In this case when the softer material is made into a seat where there are no loose edges for the vandal to start a tear, the soft elastomer No. 2 is as difficult to start a tear as elastomer No. 1. In order to start a tear a tri-angular cut must first be made and then a corner must be dug or prised up so that a section of the fabric cover can be peeled away. In trials this has proved very difficult.
EXAMPLES OF FORMULATIONS
EXAMPLE 1. P.B.W.
E.609 100.0
CERECLOR 70L 35.0
SODIUM TETRABORATE 15.0
ALUMINA TRIHYDRATE 15.0
ANTIMONY TRIOXIDE 15.0
THORCAT 535 1.0

ISOCYANATE VM25 7.2
EXAMPLE 2. P.B.W. E.609 60.0 CP. 4701 40.0 CERECLOR 70L 35.0 SODIUM TETRABORATE 15.0 ALUMINA TRIHYDRATE 15.0 ANTIMONY TRIOXIDE 15.0 THORCAT 535 1.0
ISOCYANATE VM25 9.2
EXAMPLE 3.
P.B.W.
POLYOL E609 60.0
VORANOL 4701 40.0 DR.437 21.5
WATER 2.5
CERERCLOR 70L 50.0
Al203 – 3H20 ALUMINIUM TRIHYDRATE 15.0
Sb203 ANTIMONY TRYOXIDE 10.0 Na2Bή07 10H2O SODIUM TETRABORATE 15.0
ISOCYANATE VM25 @ 105 INDEX 62.5
E609 Polymer Polyol – Supplied by Union Carbide.
VORANOL 4701 Polyol – Supplied by Dow Chemicals.
DR.437 Catalyst Blend – Supplied by Dow Chemicals,
CERERCLOR 70L Chlorinated Parrafin.
VM.25 Isocyanate M.D.I.
Di-isocyanato-Diphenylmethane – Supplied by I.C.I.

Samples tested at AWTA Textile Testing Melbourne with the following results.
Test method Ats 1000.001 Airbus Industry spec, to evaluate toxic gas and smoke emission. Ats 1000.001
Smoke emission and toxicity Maximum requirement of gases
Duration 90 240 480 sees. 90 sees. 240 sees.
1(a) Non Flaming Test. Minimum Light Transmission (MLT)% 1. 78.5 40.0 0.790
2.» 75.0 34.5 1.300
3. 66.0 25.8 0.570
4. 60.0 16.8 1.130
1(b) Specific Optical Density (Ds) 100 200 1. 14 53 277
2. 16 61 250
3. 24 78 296
4. 29 106 259
1(c) Gas Samples ppm. HF. *1.5 *1.5 50 50
HCL. *50 *50 50 500
HCN. *2 *2 100 150
S02. *20 *20 50 100
CO. *1000 *1000 3000 3500 O + N02 *2 *2 50 100
2(a) Flaming Test. Minimum Light Transmission (MLT) % –
1. 33.0 0.25 0.120
2. 78.5 0.27 0.091
3. 57.0 0.60 0.180 4. 61.6 0.42 0.095

3500

All sampleε-were reinforced with wire meεh and covered with a woollen fabric which had been flame retarded with 8% PFZ.#
# Potaεsium Fluor-Zirconate.
Sample seatε were tested to CSIRO protocol for the aεseεsement of fire behavior of furniture using large ignition εourceε parts 1&2. 300. 400. & 600. Gram Cribs were used on samples made from formulations 1 & 2.

s* Smoldering continued for 55 minutes which is close to the limit for the test.
Maximum Smoke Obscuration %:
BY 5 MIN BY 10 MIN BY 15 MIN
300 gm.fireload
300 gm.fireload
400 gm.fireload
400 gm.fireload
600 gm.fireload

600 gm.fireload 15% 56% 65%
Note in all tests the fire was confined to the immediate area of the ignition source.
The level of smoke when compared to e.g. a fire retardant polyurethane foam seat cushion is considerably lower.

Fire Test Performed on F.R. Foam Seat
Max. Smoke Obscuration % BY 5 MIN BY 10 MIN BY 15 MIN
300 gm. fireload 30% 92% 92%
in teεtε performed on samples made according to the invention. The time from ignition to maximum level of smoke is extended and the overall level of smoke produced is much lower, allowing a longer period for escape or opportunity to put out the fire.
It is thus apparent that the present invention provides an improved and time-saving method of manufacturing vandal resistant seating.

Claims (19)

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS;

1. A method of manufacturing a formed (vandal resistant) article including an outer fabric material and an inner micro-cellular thermosetting foam plastics material, comprising : placing the outer fabric material, which has been treated on its inner side with a flexible thermosetting plastics material composition, in a mould; closing the mould to define a mould cavity and to deform the fabric material to a predetermined configuration; injecting a foamable flexible thermosetting plastics material composition into said mould; allowing the foamable flexible plastics material to react and completely fill said mould, the presεure of the • reaction in the closed space of the mould causing the flexible plastics material to bond to the fabric material; allowing the resultant fabric covered micro¬ cellular foam plasticε material to cure; opening the mould and removing the article.

2. A method as claimed in Claim 1, in which the volume of unexpended foamable material injected into the mould cavity is from 50% to 100% of the volume of the cavity.

3. A method as claimed in Claim 1, in which the volume of unexpended foamable material injected into the mould cavity is from 60% to 99% of the volume of the cavity.

4. A method as claimed in Claim 1, in which the volume of unexpended foamable material injected into the mould cavity is from 75% to 95% of the volume of the cavity.

5. A method of manufacturing a formed wire mesh reinforced article including an outer fabric material and an inner micro-cellular foam thermosetting comprising plaεtics material reinforced by a metal wire mesh embedded therein comprising placing the outer fabric material, treated on its inner side with a flexible thermosetting plastics material composition in a mould; closing the mould to deform the fabric material to a predetermined configuration; opening the mould and inserting the wire mesh on the inner side of the fabric; closing the mould and injecting a foamable flexible thermosetting plastics material composition; allowing the foamable flexible plastics material to react and completely’ fill the mould, the pressure of the reaction in the closed εpace of the mould cauεing the flexible plastics material to surround the wire meεh and to bond to the fabric material; allowing the reεultant fabric covered reinforced micro-cellular foam plasticε material to cure; opening the mould and removing the article.

6. A method aε claimed in Claim 5, in which the volume of unexpended foameble meteriel injected into the mould cavity iε from 50% to 100% of the volume of the cavity.

7. A method aε claimed in Claim 5, in which the volume of unexpanded foemable material injected into the mould cavity is from 60% to 99% of the volume of the cavity.

8. A method as claimed in Claim 5, in which the volume of unexpanded foamable materiel injected into the mould cevity is from 75% to 95% of the volume of the cevity.

9. A method of menufecturing a formed article comprising : piecing e preform having an outer febric meteriel, treeted on its inner side with e flexible thermosetting plesticε meteriel compoεition, in e mould; injecting β foemeble flexible thermoεetting plestics meteriel composition into seid mould; ellowing the foemeble flexible plesticε meteriel to reect end completely fill εeid mould, the proceεε of the reection in the cloεed spece of the mould ceusing the flexible pleεticε meteriel to bond to the febric material; allowing the resultant fabric covered micro-cellular foam plastics materiel to cure; opening the mould and removing the article.

10. A method as cleimed in Cleim 9, which includes insertion of a wire reinforcing mesh into the mould on the inner side of the outer fabric material prior to injection of the foameble flexible thermosetting plestics meteriel.

11. A method eε cleimed in Cleim 9 or 10, in which the voiume of unexpended foemeble meteriel injected into the mould cevity iε from 50% to 100% of the volume of the cevity.

12. A method eε cleimed in Cleim 9 or 10, in which the volume of unexpended foamable materiel injected into the mould cevity iε from 60% to 99% of the volume of the cevity.

13. A method as claimed in Cleim 9 or 10, in which the volume of unexpended foemeble meteriel injected into the mould cevity is from 75% to 95% of the volume of the cevity.

14. A method eε cleimed in Cleim 1, in which the mould includeε e vent to permit eir to eεcepe from the mould cevity as it is displaced due to the injection of the foameble flexible thermosetting plestics meteriel.

15. A method es cleimed in Cleim 14, wherein the foemable flexible thermosetting plaεticε meterial iε injected into the mould at the top of the mould and the vent is at the bottom of the mould.

16. A method as claimed in Cleim 5, in which the mould includes e vent to permit eir to escepe from the mould cevity eε it is displeced due to the injection of the foemeble flexible thermoεetting pleεticε meteriel.

17. A method eε cleimed in Cleim 16, wherein the foamable flexible thermoεetting plastics material is injected into the mould at the top of the mould and the vent iε at the bottom of the mould.

18. A method aε claimed in Claim 10 or 11, in which the mould includeε a vent to permit air to eεcape’ from the mould cevity es it is displeced due to the injection of the foamable flexible thermosetting plasticε material.

19. A method as claimed in Claim 10 or 11, wherein the foemable flexible thermosetting plasticε materiel iε injected into the mould et the top of the mould end the vent iε et the bottom of the mould.

AU69588/91A
1989-12-11
1990-12-10
Vandal-resistant seat

Ceased

AU639972B2
(en)

Applications Claiming Priority (2)

Application Number
Priority Date
Filing Date
Title

AUPJ7824

1989-12-10

AUPJ782489

1989-12-11

Publications (2)

Publication Number
Publication Date

AU6958891A
true

AU6958891A
(en)

1991-07-18

AU639972B2

AU639972B2
(en)

1993-08-12

Family
ID=3774409
Family Applications (1)

Application Number
Title
Priority Date
Filing Date

AU69588/91A
Ceased

AU639972B2
(en)

1989-12-11
1990-12-10
Vandal-resistant seat

Country Status (11)

Country
Link

US
(1)

US5275769A
(en)

EP
(1)

EP0593448B1
(en)

KR
(1)

KR920703295A
(en)

AT
(1)

ATE139928T1
(en)

AU
(1)

AU639972B2
(en)

CA
(1)

CA2069474A1
(en)

DE
(1)

DE69027687T2
(en)

ES
(1)

ES2090298T3
(en)

GR
(1)

GR3021008T3
(en)

NO
(1)

NO300259B1
(en)

WO
(1)

WO1991008886A1
(en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party

Publication number
Priority date
Publication date
Assignee
Title

WO1994023937A1
(en)

*

1993-04-16
1994-10-27
Imperial Chemical Industries Plc
Preparation of pour-in-place articles employing elastomer coating

AU685169B2
(en)

*

1993-09-30
1998-01-15
Henderson’s Industries Pty Ltd
Vandal resistant material

EP0721307A4
(en)

*

1993-09-30
1997-05-14
Hendersons Ind Pty Ltd
Vandal resistant material

DE59503038D1
(en)

*

1994-03-31
1998-09-10
Akzo Nobel Faser Aktiengesells

Vandalism protection layer

FR2833218B1
(en)

*

2001-12-12
2004-02-13
Cera

METHOD FOR PRODUCING A FOAM ELEMENT WITH TIGHT COATING, AND LEATHER SEAT OBTAINED BY SAID METHOD

DE60216156T2
(en)

*

2002-05-22
2007-10-04
Fiberpachs, S.A., Pacs del Penedes

METHOD AND DEVICE FOR PRODUCING THERMOSTABILES PLASTIC PARTS WITH A TEXTILE COVERED WITH FLEXIBLE AREAS PROTECTED FROM VANDALISM AND THE PART THUS OBTAINED

US20050168040A1
(en)

*

2004-01-30
2005-08-04
Goosen Gregory F.
Seat insert for transit vehicle seat

CN102371644A
(en)

*

2010-08-05
2012-03-14
和硕联合科技股份有限公司
In-mold molding method and housing produced therewith

CN107042602A
(en)

*

2016-02-05
2017-08-15
汉达精密电子(昆山)有限公司
Inserts associated methods and products thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party

Publication number
Priority date
Publication date
Assignee
Title

FR1558801A
(en)

*

1968-03-27
1969-02-28

US3647608A
(en)

*

1970-01-26
1972-03-07
Gen Tire & Rubber Co
Cut-resistant foam article

US3647260A
(en)

*

1970-08-13
1972-03-07
Gen Tire & Rubber Co
Replaceable seat insert and process of making

DE2127582C3
(en)

*

1971-06-03
1975-06-12
Krauss-Maffei Ag, 8000 Muenchen

Method for producing a cell-shaped article from polymer! plastic

GB1465471A
(en)

*

1973-01-31
1977-02-23
Storey Brothers & Co
Resilient padded items

US4092387A
(en)

*

1973-06-18
1978-05-30
Saab-Scania Ab
Process for the production of articles of cellular plastic provided with a covering of another material

US4144296A
(en)

*

1976-06-23
1979-03-13
The Mead Corporation
Process for molding a polystyrene foam structure with a bonded covering

US4138283A
(en)

*

1976-09-01
1979-02-06
Textron Inc.
Process for producing fabric-backed cushioning material

US4247347A
(en)

*

1979-03-19
1981-01-27
Lischer James F
Process for molding cloth including a fabric layer by heating to at least the greater of the set or softening temperature the stitches thereof having never been set, and molding a cloth covered foam filled product

ATE14284T1
(en)

*

1981-06-30
1985-08-15
Ciba Geigy Ag

PROCESS FOR MANUFACTURING A COMPOSITE WITH A RIGID PLASTIC FOAM CORE AND A HIGH-DENSITY RIGID PLASTIC FOAM BASE LAYER.

US4673613A
(en)

*

1985-03-21
1987-06-16
Vickers Xatal Pty. Ltd.
Laminate material comprising polyurethane and metal mesh

GB8616132D0
(en)

*

1986-07-02
1986-08-06
Bp Chem Int Ltd
Polyurethane foams

JPS63139709A
(en)

*

1986-12-02
1988-06-11
Honda Motor Co Ltd
Manufacture of polyurethane foam coated with skin

JPH0798338B2
(en)

*

1986-12-02
1995-10-25
三井東圧化学株式会社

Interior material manufacturing method

US5248185A
(en)

*

1987-06-02
1993-09-28
Schaumstoffwerk Greiner Gesellschaft M.B.H.
Seat with foamed plastic padding and process for its manufacture

FR2620966B1
(en)

*

1987-09-24
1990-03-02
Duret Fils Ets M

METHOD FOR MOLDING A FRAME ON A SEAT TRIM FOR THE PRODUCTION OF A SEAT ELEMENT

JPH01118417A
(en)

*

1987-10-31
1989-05-10
Ikeda Bussan Co Ltd
Method for foam-molding foam integral with skin material

JPH01118418A
(en)

*

1987-10-31
1989-05-10
Ikeda Bussan Co Ltd
Method for foam-molding foam integral with skin material

US4904541A
(en)

*

1987-11-02
1990-02-27
Hunter Wire Products Limited
Wire mesh for a vandal-proof seat

JPH01247119A
(en)

*

1988-03-30
1989-10-03
Ikeda Bussan Co Ltd
Method for molding skin unified molded sheet

1990

1990-12-10
CA
CA002069474A
patent/CA2069474A1/en
not_active
Abandoned

1990-12-10
WO
PCT/AU1990/000585
patent/WO1991008886A1/en
active
IP Right Grant

1990-12-10
ES
ES91900673T
patent/ES2090298T3/en
not_active
Expired – Lifetime

1990-12-10
AT
AT91900673T
patent/ATE139928T1/en
not_active
IP Right Cessation

1990-12-10
AU
AU69588/91A
patent/AU639972B2/en
not_active
Ceased

1990-12-10
KR
KR1019920701349A
patent/KR920703295A/en
active
IP Right Grant

1990-12-10
US
US07/854,622
patent/US5275769A/en
not_active
Expired – Fee Related

1990-12-10
EP
EP91900673A
patent/EP0593448B1/en
not_active
Expired – Lifetime

1990-12-10
DE
DE69027687T
patent/DE69027687T2/en
not_active
Expired – Fee Related

1992

1992-05-19
NO
NO921963A
patent/NO300259B1/en
unknown

1996

1996-09-12
GR
GR960402358T
patent/GR3021008T3/en
unknown

Also Published As

Publication number
Publication date

AU639972B2
(en)

1993-08-12

GR3021008T3
(en)

1996-12-31

EP0593448B1
(en)

1996-07-03

NO300259B1
(en)

1997-05-05

CA2069474A1
(en)

1991-06-12

ATE139928T1
(en)

1996-07-15

WO1991008886A1
(en)

1991-06-27

EP0593448A1
(en)

1994-04-27

DE69027687T2
(en)

1997-01-23

US5275769A
(en)

1994-01-04

ES2090298T3
(en)

1996-10-16

DE69027687D1
(en)

1996-08-08

EP0593448A4
(en)

1992-09-09

NO921963D0
(en)

1992-05-19

NO921963L
(en)

1992-06-09

KR920703295A
(en)

1992-12-17

Similar Documents

Publication
Publication Date
Title

US4828908A
(en)

1989-05-09

Vandal resistant seat

US4529639A
(en)

1985-07-16

Molded foam-backed carpet assembly and method of producing same

US10435529B2
(en)

2019-10-08

Air-permeable sponge composition and method for preparing air-permeable sponge by using the same

US4627178A
(en)

1986-12-09

Molded shoe innersole

US4581187A
(en)

1986-04-08

Method of manufacturing a molded composite elastomeric foam sheet innersole

US4579764A
(en)

1986-04-01

Molded carpet assembly with sound deadening foam backing

US4674204A
(en)

1987-06-23

Shock absorbing innersole and method for preparing same

AU639972B2
(en)

1993-08-12

Vandal-resistant seat

EP0591553A1
(en)

1994-04-13

Skinned in-mold expansion molding product of polypropylene resin and production thereof

US20050280173A1
(en)

2005-12-22

Process for the production of polyurethane molded articles

GB2067460A
(en)

1981-07-30

Shaping foam slabs

KR101510023B1
(en)

2015-04-07

Seat-cover with enhanced air permeability and adhesion

JPH06262633A
(en)

1994-09-20

Manufacture of foam composite body

US20090155520A1
(en)

2009-06-18

Floor covering with viscoelastic dampening properties

US4673613A
(en)

1987-06-16

Laminate material comprising polyurethane and metal mesh

JPWO2019065758A1
(en)

2019-11-14

Synthetic resin skin material composite and method for producing synthetic resin skin material composite

US3655471A
(en)

1972-04-11

Method of producing a fibrous sheet composition

US5259896A
(en)

1993-11-09

Method of making vandal resistant seat

JPH05503046A
(en)

1993-05-27

vandal resistant seat

JPH08187808A
(en)

1996-07-23

Flame-retardant skin material

JPH1142654A
(en)

1999-02-16

Panel and its manufacture

JPS6330240A
(en)

1988-02-08

Preparation of sheet-shaped molding

JPS591230A
(en)

1984-01-06

Molded carpet for automobile and manufacture thereof

JPH08258059A
(en)

1996-10-08

Production of skin material integrally molded seat member

Gmitter et al.

1976

International Patent Digest

Legal Events

Date
Code
Title
Description

2003-07-10
MK14
Patent ceased section 143(a) (annual fees not paid) or expired

Download PDF in English

None